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Abstract 

Shapley value is the contribution of each player in a cooperative game. By observing the 

contribution of each player, different inferences can be made. It is widely applicable, such as 

observing the participation of each stock in a portfolio in their contribution to the profit and loss, 

or certain risk factors to assess the risk added by including a specific stock. 

The application of Shapley Value in portfolio management and assessment in the past has been 

highly theoretical, most papers have only focused on generated data, rather than testing out their 

theories on empirical datasets. Therefore, one of our objectives was to test the validity of Portfolio 

Assessment, and Risk and Return Attribution through Shapley Value on real data and expand the 

existing validity of the theories. We proved that by making some key changes, existing theoretical 

research can be applied to real data, with similar, if slightly worse results. This proof opens the 

possibility of Shapley Value being implemented to solve real-world problems.  
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Introduction 

Shapley Value According to L. S. Shapley et al. (1953), Shapley Value is used to calculate a 

value for a game with the following assumptions:  

•  Utility is objective and transferable (Utility being every prospect that can arise from 

playing)  

• The games are a cooperative affair.  

• The games granting 1 and 2, are adequately by its characteristic functions. 

Please find the formula and explanation of Shapley Value in Theoretical Background. 

Example Let us consider a simple voting game with four parties A, B, C, D with 45, 25, 15, 

and 15 representatives, respectively. They are to vote on whether to pass a $100 million spending 

bill and how much of this amount should be controlled by each of the parties. A majority vote, that 

is, a minimum of 51 votes, is required to pass any legislation, and if the bill does not pass then 

every party gets zero to spend. A, B, C, and D have 45, 25, 15, and 15 votes. 51 votes are required 

to pass the $100 million bill. Therefore, A is in all winning coalitions, but doesn’t win alone. B, C, 

D are interchangeable as they always provide the same marginal benefit to each coalition. They 

add $100 million to the coalitions {B, C}, {C, D}, {B, D} that do not include them already and to 

{A}. They add $0 to all other coalitions. Grinding through the Shapley value calculation, we get 

the payoff division (50, 16.66, 16.66, 16.66), which adds up to the entire $100 million.  

Applications The original idea of Shapley value is from cooperative game theory (Shapley, 

1953). In the original paper, Shapley value is used to allocate the surplus of a coalition to each 

player. H. Moulin (2004) describes Shapley value as “the single most important contribution of 

game theory to distributive justice”, showing its importance in fair value allocation. Another area, 

recently gaining more attention, is interpreting the output of machine learning models such as 
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neural networks or random forests (Strumbelj, 2014). Inputs to models are considered as players 

in a coalition, and prediction value, y, is a coalition value. This application is widely used and has 

a lot of open-source projects. For example, SHAP in Python is popular library with about 18,200 

stars in GitHub (Lundberg, 2017). Another application of Shapley value is risk decomposition of 

the investment portfolio of stocks or derivatives (Hagan et al., 2021; Colini-Baldechi et al., 2018). 

Using different risk metrics such as greeks or variance, we can understand what assets are causing 

more risk. 

Overview In this paper, we explained Shapley Value in detail. We will now discuss all the 

papers we researched. We will then show the experiments we carried out and our results, how have 

we improved on the original paper and what more can be done in the future. The report has been 

formatted as follows, first we will discuss the research papers we have studied, then we will go 

over all the theoretical background required to understand our experiments. Then we will go over 

our experiments and results. 
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Literature Review 

Portfolio risk allocation through Shapley value by P. S. Hagan, A. Lesniewski, G. 

E. Skoufis, and D. E. Woodward. 

Hagan et al. (2021) argue about the application of Shapley value of cooperative game theory 

on risk allocation scheme creation. In other words, to naturally interpret the contribution of each 

risk factor on overall portfolio risk using Shapley value. In addition, they demonstrate a method to 

interpret enterprise risk metrics such as Value at Risk and Expected Shortfall (VaR and ES).  

Attribution of VAR and ES Hagan et al. (2021) used Shapley value to allocate enterprise 

risk metrics such as VaR and ES to the risk factor of the portfolio. VaR or Value at Risk is a 

statistic used to quantify the risk of a portfolio. It represents the maximum expected loss with a 

certain confidence level. ES or Expected Shortfall is a statistic used to quantify the risk of a 

portfolio. Given a certain confidence level, this measure represents the expected loss when it is 

greater than the value of the VaR calculated with that confidence level. 

Hagan et al. (2021) used Historical Bootstrapping to estimate the values of the Shapley Values 

of VaR and ES. They also created an estimate for this value and tested how well the estimate 

performed for a dataset they created. 
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Explaining Deep Neural Networks with a Polynomial Time Algorithm for 

Shapley Values Approximation by M. Ancona, C. Oztireli, M. Gross (2019) 

Objective Deep Neural Networks are a black box model (models which provide useful 

information without revealing any information about its internal working). Making them more 

difficult to adopt for tasks where interpretability is a requirement. 

Since global interpretability of DNN’s makes no sense, in this paper, M. Ancona et al. (2019) 

decided to focus on local interpretability, which aims to explain a particular decision for a given 

model and input instance. 

To achieve this, they looked at axiomatic approaches (an axiom is a self-evident property of 

the attribution method that should be satisfied for any explanation generated by the method itself). 

By leveraging these properties, attribution methods with stronger theoretical guarantees can be 

designed. 

So, they ended up looking into Shapley Value as a unique way of assigning attribution such that 

certain desired axioms are satisfied. 

Computation of the exact Shapley Value is hard and only computationally feasible for 20-25 

players. And thus, this paper contributed in the following ways:  

• endorsing an axiomatic approach, compare Shapley values to existing state-of-the-art 

attribution methods, motivating the use of the former to explain non-linear models. 

• formulate a novel, polynomial-time approximation of Shapley values specifically 

designed for DNNs.  

• assess empirically the approximation power of our algorithm compared to other 

attribution methods on three datasets and architectures. 
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Through this paper, M Ancona et al. (2019) showed that existing attribution models reduce 

computing Shapley Value when applied to linear models. Meanwhile, when the model is non-

linear, Shapley Value is the only method satisfying several desirable theoretical properties. 

They recommend some improvements, using DASP for recurrent neural networks, which could 

lead to new probabilistic frameworks that will enable the derivation of theoretical guarantees and 

even better approximations.  
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An Application of Shapley Value Cost Allocation to Liquidity Savings 

Mechanisms by Rodney J. Garratt (2019) 

Nowadays, the central bank supervises or provides an infrastructure for large-value payments 

settlements between banks. Historically, banks used end-of-day netting systems, but with 

increasing volumes and values, there is an existing risk in deferred payment systems. The most 

popular now is the Real-Time Gross Settlement (RGTS) system. With RGTS, all payments are 

settled individually, instantly, and during operational hours. This system ensures no risk of 

unwinding of payments by increasing requirements for liquidity to be provided by the banks. 

In perfect cases, the liquidity provided should be always sufficient to offset the queued 

payments by the banks whose net obligations are positive. However, in reality, this is not always 

the case. If there are n payments in the queue, there are 2n-1 possible combinations to be 

considered. This is computationally too expensive for a real-life scenario. Therefore, in some 

centralized queuing systems, the minimum number of payments required to settle all the payments 

is considered. The author explains the way to apply Shapley value for cost allocation problem to 

settle a set of netted payments. 

Let the number of banks be 𝑁 = {1, …, 𝑛}. Denote P is the 3-dimensional matrix of all the 

payments in the queue between each bank. Let pijk of P be a vector of payments between banks i 

and j, and k be the number of payments with k = 1, 2, … Assume there is a pre-defined cost of 

providing liquidity by each bank at the current settlement opportunity ci. 

Using this information, banks can assess the instantaneous cost and profit of any net proposal. 

Using Shapley Value, R. J. Garrat (2019) provided a method to distribute the amount a bank owes 

among all banks that require side payments based on what each bank is owed, relative to what all 

the banks that require side payments are owed. 
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The author made a proposal of a new approach for liquidity saving mechanisms, involving 

take-it-or-leave-it proposals. The potential of the proposed system’s performance relies on the 

ability to accurately assess the benefits and costs for each bank regarding how to provide liquidity. 

This is the main downside of the proposed system because in practice, the center does not know 

instantaneous benefits for any bank as this is classified information. Perhaps, this can be avoided 

by keeping track of the instantaneous benefits historically gained by each bank from previous 

payments which can still be up to date. 
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Portfolio Performance Attribution via Shapley Value by N. Moehle, S. Boyd, A. 

Ang. (2021) 

An investment process has some performance measures over a certain period. Some measures 

are preferred to be large (P&L, return) and others are better to be small such as risk, and turnover. 

Investment processes employ different features that can be active (turned on), or inactive (turned 

off). Consequently, we want to know how much of the performance is attributed to each of these 

features and a baseline. The baseline value is what the performance would have been when all 

features were off. Positive features mean that the features impacted positively the performance. A 

feature attribution can be negative, showing that the feature diminished the performance value.  

Suppose we have an investment process with some optimization method that use a leverage 

limit, ESG constraint, and a novel return forecast method. ESG constraint is used to limit trading 

of certain securities. Suppose our investment process has a return of 8% over one year, with all 

features active. Attribution may be 1% to the leverage limit, -1% to the ESG constraint, 5% to the 

return forecast, and 3% to the baseline. We interpret this as each feature contributed to the 

performance with its corresponding return.  

Attribution has different applications ranging from credit allocation for bonus payments to 

additional cost of features. There are some researches that use Shapley attribution for risk 

decomposition, but this is the first application of Shapley value to the general portfolio attribution 

problem. In the paper, attribution is used in explaining performance of portfolio. The paper 

discusses several attribution methods, namely one-at-a-time, leave-one-out, sequential, permuted 

sequential, Shapley attributions, and compare their properties. 

One of the examples, the paper gives, simulated an investment strategy based on Markowitz 

portfolio optimization and back tested with real stock data with the benchmark S&P 500 and data 
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from 2002 to 2019. Authors calculated the attribution of four performance metrics for a tax-aware 

portfolio management process: realized post-tax return, ex-ante risk, capital gains, and portfolio 

turnover. Comparing the values of different attribution methods, the paper showed that Shapley 

value reflected logical attribution and is the superior method compared to one-at-a-time and leave-

one-out methods.  

The paper concludes that Shapley value is the proposed method for portfolio performance 

attribution and possesses all necessary properties such as fairness, correct baseline, full attribution 

and monotonicity. The only disadvantage of Shapley value is expensive computation. It can be 

solved by using approximation methods. The authors show 3 ways to approximate the Shapley 

value calculations as well. 
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Multi-Period Trading via Convex Optimization by Stephen Boyd, Enzo Busseti, 

Steven Diamond, Ronald N. Kahn, Kwangmoo Koh, Peter Nystrup and Jan Speth 

(2016) 

Using an optimization task to choose an investment portfolio started with Markowitz (1952). 

The initial idea employed risk and return to choose assets without consideration of other costs. 

When trades are executed over to long periods, other costs add up significantly. Since that, 

researchers started to include different constraints and many costs and in a single period 

optimization formula. The portfolio selection task in multi-period portfolio becomes to select 

trades over several time periods. Though there have been a lot of research on the multi-period 

portfolio, mostly with dynamic programming, most of them have very few assets to consider or 

simple constrains. The advent of better algorithms and more powerful computers allows the paper 

is to conduct multi-period convex optimization with constraints to choose portfolio assets from 

huge number of assets.  

Authors describe single-period optimization (SPO) to choose assets over a single period. The 

optimization objective includes hyperparameters related to holding cost, transaction cost, and risk, 

which give more freedom to encourage or discourage more certain constrains.  

The paper suggests multi-period optimization (MPO) trading strategy to consider information 

of the multiple periods. It has several advantages over the SPO. For example, MPO considers 

transactions costs in the future because current holdings significantly impact the profitability of 

the strategy. Some return predictions might be positive only in a short period, but not long periods. 

MPO also helps to avoid risky future positions in advance when the risk is increasing. 

Authors simulated strategies with open-source market data of 5 years, from January 2012 to 

December 2016. Strategies continuous selected trades each month from the components of the 
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S&P 500 index. The paper conducted multiple backtested with different risk aversion, trading 

aversion, and holding cost parameters for both SPO and MPO. Each backtest of 5 years of data 

took only about 5 minutes with daily optimization. It allows portfolio managers to test different 

strategies within short period of time.  
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Theoretical Background 

Shapley Value Formula 

A game is a set of rules with players, and these specified players are in a position to play. A 

coalition game with transferable utility here means a pair (𝑁, 𝑣) where 𝑁 is the number of players, 

and for some 𝑆 ⊂ 𝑁. v(S) is the real value payoff which the coalition members distribute among 

themselves, with 𝑣(Φ) = 0. Let us look at the formula for Shapley Value to understand how this 

concept is implemented for a coalition game with (𝑁, 𝑣).  

𝜙𝑖(𝑁, 𝑣) =
1

𝑁!
∑|𝑆|! (|𝑁| − |𝑆| − 1)! [𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] , where 𝑆 ⊂ 𝑁\{𝑖} 

 This is a calculation of the “average marginal contribution” of agent 𝑖. Here, we start by 

averaging over all the different sequences according to which the grand coalition could be built up 

from the empty coalition. Here, if agent 𝑖 is added, its contribution is [𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)] we will 

multiply this quantity by |𝑆|! the different ways the set S could have been formed prior to agent 

𝑖’s addition and by the (|𝑁| − |𝑆| − 1)! different ways the remaining agents could be added 

afterward Finally, sum over all possible sets S and obtain an average by dividing by |𝑁|!, the 

number of possible orderings of all the agents.  
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Experiment 1. Performance attribution 

We suppose that an investment process produces a dynamic portfolio allocation over certain 

period. It has n features that can be included or excluded (active or inactive). Features is expressed 

with xi ∈ {0, 1}, with 0 meaning inactive, 1 active. The collection of feature values is a 

configuration of the investment process. It is denoted by the Boolean vector x = (x1, ... , xn). A 

number of possible configurations increases exponentially with 2n rate. In the investment process 

with n=10, there are 1000 possible configurations; with n=30, there are 109 configurations.  

The configurations with all features active, x=(1,1,...,1) = 1 is referred as the full configuration. 

The configuration with all features inactive, x=(0,...,0) = 0 is called the zero configuration or the 

baseline configuration. The investment process is evaluated using a performance metric 𝑦 ∈ ℝ.  

The paper used simulation to evaluate performance with different configurations. This has the 

form of a backtesting engine. The process is represented by a function 𝑓: {0,1}𝑛 →  ℝ, with  

y = f(x) = f(x1,..., xn).  

Suppose there is the configuration x with xi = 0. We refer ei  as the i-th unit vector. Then x’ = x 

+ ei  is the configuration obtained by making feature i active. The lift or marginal contribution by 

adding feature i is  f(x + ei) − f(x). This marginal contribution depends on the given configuration 

x or which features are already active or not.  

Attribution methods  

1. One-at-a-time attribution is calculated by  

ai = f(ei) − f(0), i = 1,..., n.  

The attribution of each feature is change in performance when this feature is added to the 

baseline configuration. This method needs to do only n (n+1 if we include the baseline) 

simulations.  



 19 

2. Leave-one-out attribution is set by ai = f(1) − f(1−ei), i=1,..., n. The attribution is the 

marginal performance change of adding feature i when all other features are present. Leave-one-

out attribution requires n simulations like one-at-a-time attribution.  

3. Sequential attribution. We start by calculating the baseline configuration performance b = 

f(0). Then, we keep adding 1 feature and simulate the configuration until we have all features. The 

sequential attribution takes a form  

ai = f(e1 +···+ei) − f(e1 +···+ei−1), i=1,..., n.  

The formula is the marginal performance of feature i with the feature 1, ..., i-1 are active. This 

method requires n simulations like previous two methods.  

4. Permuted sequential attribution. This is an extension of sequential attribution. We use π 

= (k1,...,kn), which is a permutation of (1,...,n). Then, we take the configuration vector when we 

permute the features using π and apply sequential attribution on the new order of features. In the 

sequential attribution, we add features one by one in order, whereas in the permuted sequential 

attribution, we add features in the order of (k1,...,kn).  

5. Shapley attribution  

Shapley attribution can be regarded as the average of the permuted sequential attributions over 

all n! permutations. Let’s denote aπ the attribution for permuted sequential attribution with 

permutation π. Shapley value becomes  

𝑎 =
1

𝑛!
 ∑ 𝑎𝜋𝜋  , where the sum is over all n! permutations. 

 

Experiment 2. Portfolio Management based on Convex Optimization 

Model 
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Portfolio. Portfolio consists of holdings in n assets and a cash account. Portfolio is updated 

every discrete time periods labelled t = 1,…,T. These time periods are arbitrary, could be daily, 

weekly, or hourly, for example. ℎ𝑡 ∈  ℝ𝑛 is used to denote the portfolio the portfolio holdings in 

the dollar value at the start of the period t. The value of (ℎ𝑡)𝑛+1 is the cash balance. If (ℎ𝑡)𝑛+1 =

0, the portfolio is considered as fully invested showing that we hold no cash.  

The total value of the portfolio (in dollars) is 𝑣𝑡 = 𝟏𝑇ℎ𝑡. The gross exposure of the portfolio can 

be calculated by ‖(ℎ𝑡)1:𝑛‖1 = |(ℎ𝑡)1| + ⋯ + |(ℎ𝑡)𝑛|, which is the sum of the absolute values of 

the positions. The leverage of the portfolio is equal to the gross exposure divided by the total value,  

    ‖(ℎ𝑡)1:𝑛‖1

𝑣𝑡 
  . 

In some cases, it’s easier to use weights of assets in terms of the total value. Weights 𝑤𝑡 ∈  ℝ𝑛 are 

calculated by 𝑤𝑡 =
ℎ𝑡

𝑣𝑡
. The weights sum to one. The leverage of the portfolio is equal to the L1 

norm of the asset weights, ‖𝑤1:𝑛‖1. 

Trades. We used 𝑢𝑡 ∈  ℝ𝑛  to denote the trades in dollars. Positive values (𝑢𝑡)𝑖 > 0 means that 

we buy asset i and negative values (𝑢𝑡)𝑖 < 0  means we sell asset i at the period of t, for i = 1,…,n. 

The vector 𝑧𝑡 = 𝑢𝑡/𝑣𝑡  is the normalized trades by the total value and unitless. Half of its L1 norm 

‖(𝑢𝑡)1:𝑛‖1/2 is the turnover in dollars at the period t. Turnover can be expressed in a percentage 

as ‖(𝑢𝑡)1:𝑛‖1/(2𝑣𝑡) = ‖𝑧1:𝑛‖1/2.  

The post-trade portfolio is given as  

ℎ𝑡
+ = ℎ𝑡 + 𝑢𝑡 

Its means the portfolio holding immediately after trading at the period t. 

Transaction cost. Every time, asset is sold or bought, a trading or transaction cost occurs, which 

is denoted as 𝜑𝑡
𝑡𝑟𝑎𝑑𝑒(𝑢𝑡) . Transaction cost function is 𝜑𝑡

𝑡𝑟𝑎𝑑𝑒: ℝ𝑛+1 → ℝ. It’s assumed that there 
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is no transaction cost with the cash account. Another assumption is that when there is no trade, 

transaction cost becomes zero 𝜑𝑡
𝑡𝑟𝑎𝑑𝑒(0) = 0.  

A model for the transaction cost function is  

𝑥 → 𝑎|𝑥| + 𝑏𝜎
|𝑥|3/2

𝑉1/2
+ 𝑐𝑥 

where x is a dollar trade amount, a is one half the bid-ask spread for the asset (in fraction of asset 

price), b is a positive constant, V is the total market volume for the asset in the given period (in 

dollars), 𝜎 is the price volatility, c is a number to create asymmetry in the cost. If 𝑐 = 0, buying 

and selling the asset have the same transaction cost. 

Holding cost. Holding the post-trade portfolio ℎ𝑡
+ at the period t bears a holding cost (in dollars) 

𝜑𝑡
ℎ𝑜𝑙𝑑(ℎ𝑡

+ ), where  𝜑𝑡
ℎ𝑜𝑙𝑑: ℝ𝑛+1 → ℝ is the holding cost function.  

A popular holding cost model is charging for borrowing assets when shorting them in the form  

𝜑𝑡
ℎ𝑜𝑙𝑑(ℎ𝑡

+ ) = 𝑠𝑡
𝑇(ℎ𝑡

+)_  

Where (𝑠𝑡)𝑖 ≥ 0 is the borrowing fee for shorting asset i, and (𝑧)_ = max {−𝑧, 0} means the 

negative part of a number z. 

Self-financing condition. It’s assumed that no cash from outside can be put or taken out of the 

portfolio, and trading and holding costs are settled from the cash account at the start of each period. 

The self-financing condition can be written as  𝟏𝑇𝑢𝑡 + 𝜑𝑡
𝑡𝑟𝑎𝑑𝑒(𝑢𝑡) + 𝜑𝑡

ℎ𝑜𝑙𝑑(ℎ𝑡
+ ) = 0. 

Investment. The post-trade portfolio and cash are invested for one period, until the beginning of 

the next period. After one period, the portfolio becomes  

ℎ𝑡+1 = ℎ𝑡
+ + 𝑟𝑡 ∘ ℎ𝑡

+ = (1 + 𝑟𝑡) ∘ ℎ𝑡
+,    t = 1,…,T-1, 

where 𝑟𝑡 ∈  ℝ𝑛 is the vector of asset and cash returns at period t to period t-1, and ∘  means 

elementwise multiplication. The number (𝑟𝑡)𝑛+1  can be the risk-free interest rate. 

Metrics 
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Measuring the portfolio performance against a benchmark is commonly used. The benchmark’s 

weights 𝑤𝑡
𝑏 ∈  ℝ𝑛+1 are share of the assets. Its return is 𝑅𝑡

𝑏 = 𝑟𝑡
𝑇𝑤𝑡

𝑏 . The active return of the 

portfolio can be calculated as 𝑅𝑡
𝑎 = 𝑅𝑡

𝑝− 𝑅𝑡
𝑏 . Annualized return of the portfolio is √𝑅𝑝𝑒𝑟𝑖𝑜𝑑

𝑝𝑛
, 

where 𝑅𝑝𝑒𝑟𝑖𝑜𝑑
𝑝

 is the return over a certain period and n is period time in years. 

The information ratio (IR) of the portfolio is the average of the active returns divided by the 

standard deviation of the active returns  𝐼𝑅 = 𝑅𝑎̅̅ ̅̅ /𝜎𝑎 

Single-Period Optimization (SPO) 

We formulate the problem as convex optimization problem that considers the portfolio 

performance over one period, and constraints of the portfolio. In the development of a trading 

strategy, most attention is paid to the formation of estimates or forecasts of the return 𝑟𝑡. The paper 

considers that estimates are given.  

We can express the estimated portfolio return as 

𝑅̂𝑡
𝑝 = 𝑟̂𝑡

𝑇𝑤𝑡 + 𝑟̂𝑡
𝑇𝑧𝑡 − 𝜑𝑡

𝑡𝑟𝑎𝑑𝑒(𝑧𝑡) − 𝜑𝑡
ℎ𝑜𝑙𝑑(𝑤𝑡 + 𝑧𝑡) 

Risk-return optimization 

To determine the normalized asset trades zt , we need to solve this optimization problem 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑅̂𝑡
𝑝 − 𝛾𝑡𝜓𝑡(𝑤𝑡 + 𝑧𝑡) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑧𝑡 ∈ 𝑍𝑡 , 𝑤𝑡 + 𝑧𝑡 ∈ 𝑊𝑡 

𝟏𝑇𝑧𝑡 + 𝜑𝑡
𝑡𝑟𝑎𝑑𝑒(𝑧𝑡) + 𝜑𝑡

ℎ𝑜𝑙𝑑(𝑤𝑡 + 𝑧𝑡) = 0 

where 𝜓𝑡: ℝ𝑛+1 → ℝ is a risk function and 𝛾𝑡  is the risk aversion parameter.  

We can replace the self-financing constraint with the approximate constraint 𝟏𝑇𝑧𝑡 = 0. Also, by 

replacing 𝑅̂𝑡
𝑝
 with its definition and removing the constant part, we get 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑟̂𝑡
𝑇𝑧𝑡 − 𝜑𝑡

𝑡𝑟𝑎𝑑𝑒(𝑧𝑡) − 𝜑𝑡
ℎ𝑜𝑙𝑑(𝑤𝑡 + 𝑧𝑡) − 𝛾𝑡𝜓𝑡(𝑤𝑡 + 𝑧𝑡) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝟏𝑇𝑧𝑡 = 0, 𝑧𝑡 ∈ 𝑍𝑡 , 𝑤𝑡 + 𝑧𝑡 ∈ 𝑊𝑡 

Risk measures 

The risk function 𝜓𝑡 can be any risk measure of a portfolio. Variance of returns was commonly 

used traditionally.  

Absolute risk. With the assumption that returns are stochastic and Σ𝑡 is the covariance matrix, the 

variance of  𝑅𝑡
𝑝
 is  

𝑣𝑎𝑟(𝑅𝑡
𝑝) = (𝑤𝑡 + 𝑧𝑡)𝑇  Σ𝑡 (𝑤𝑡 + 𝑧𝑡) 

The quadratic risk measure is 

𝜓𝑡(𝑥) = 𝑥𝑇  Σ𝑡 𝑥 

Active risk. With the assumption that returns are stochastic, the variance of  𝑅𝑡
𝑝
 is  

𝑣𝑎𝑟(𝑅𝑡
𝑝) = (𝑤𝑡 + 𝑧𝑡 − 𝑤𝑡

𝑏)
𝑇

 Σ𝑡 (𝑤𝑡 + 𝑧𝑡 − 𝑤𝑡
𝑏) 

The quadratic risk measure is 

𝜓𝑡(𝑥) = (𝑥𝑇 − 𝑤𝑡
𝑏) Σ𝑡 (𝑥 − 𝑤𝑡

𝑏) 

Using SPO  

We can scale the transaction cost and holding cost rates by aversion parameters 𝛾𝑡𝑟𝑎𝑑𝑒, 𝛾ℎ𝑜𝑙𝑑 

respectively. Changing the trading aversion parameters will help to increase or reduce turnover.  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑟̂𝑡
𝑇𝑧𝑡 − 𝛾𝑡𝑟𝑎𝑑𝑒𝜑𝑡

𝑡𝑟𝑎𝑑𝑒(𝑧𝑡) − 𝛾ℎ𝑜𝑙𝑑𝜑𝑡
ℎ𝑜𝑙𝑑(𝑤𝑡 + 𝑧𝑡) − 𝛾𝑟𝑖𝑠𝑘𝜓𝑡(𝑤𝑡 + 𝑧𝑡) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝟏𝑇𝑧𝑡 = 0, 𝑧𝑡 ∈ 𝑍𝑡 , 𝑤𝑡 + 𝑧𝑡 ∈ 𝑊𝑡 

Values of hyperparameters 𝛾𝑡𝑟𝑎𝑑𝑒 , 𝛾ℎ𝑜𝑙𝑑 , 𝛾𝑟𝑖𝑠𝑘 make a significant change on performance of the 

SPO. They are usually chosen by back-testing. 
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Experiment 3. Shapley Value Attribution for VaR and ES 

Shapley Value Estimation Proof 

For Shapley value attribution of VaR and ES, we will follow the calculations done by Hagan 

et al. (2021). Let X represent the portfolio’s daily P&L. Under an elliptical distribution, VaR𝑞 and 

ES𝑞 are linear in the standard deviation 𝜎(𝑋) = √Var(𝑋)  

VaR𝑞(𝑋) = 𝜇(𝑋) − 𝐴𝑞𝜎(𝑋) 

ES𝑞(𝑋) = 𝜇(𝑋) − 𝐵𝑞𝜎(𝑋) 

Here, Aq and Bq are constants depending only on the distribution and confidence level, and 

µ(X) is linear in X. The authors then assume a Multinomial Gaussian Distribution and according 

to some of their older calculation. 

𝑉𝑎𝑅𝑞 (𝑋)  =  𝜇𝑇𝑋 − 𝛷−1(𝑞)𝜎(𝑋) 

𝐸𝑆𝑞  (𝑋)  =  𝜇𝑇𝑋 − 
𝜑(𝛷−1(𝑞))

1 − 𝑞
𝜎(𝑋) 

Here, Φ(𝑧) is the cumulative standard normal distribution and 𝜑(𝑧) is the density of Φ(𝑧). 

Using Shapley value of linear cooperative game, they estimate that 𝑆ℎ𝑖(𝑋)  =  µ(𝑋𝑖), through 

approximation, we have.  

𝑆ℎ𝑖(𝑉𝑎𝑅𝑞)  ≈  𝜇(𝑋𝑖 )  − 𝐴𝑞𝜌(𝑋𝑖 , 𝑋)𝜎(𝑋𝑖) 

𝑆ℎ𝑖(𝐸𝑆𝑞)  ≈  𝜇(𝑋𝑖 )  − 𝐵𝑞𝜌(𝑋𝑖 , 𝑋)𝜎(𝑋𝑖) 

Explanation of Estimator 

The focus here is on 𝐴𝑞𝜌(𝑋𝑖 , 𝑋)𝜎(𝑋𝑖) , and 𝐵𝑞𝜌(𝑋𝑖 , 𝑋)𝜎(𝑋𝑖) , where 𝜌(𝑋𝑖 , 𝑋)  is the 

covariance of 𝑋𝑖 and 𝑋, 𝜎(𝑋𝑖) is the standard deviation of 𝑋𝑖 , 𝐴𝑞  is 𝛷−1(𝑞), the z-score for the 

given distribution and confidence interval q, and 𝐵𝑞 is 
𝜑(𝛷−1(𝑞))

1−𝑞
, where 𝜑(𝑧) =  (2𝜋)−

1

2  𝑒𝑥𝑝(
−𝑧2

2
)  
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Experimental Study 

Table 1. Data for the return attribution example in experiment 1 

 Benchmark 

(0, 0) 

Country allocation 

(1, 0) 

Stock selection 

(0, 1) 

Full portfolio 

(1, 1) 

f (x) 6.8 4.8 9.4 8.3 

Experiment 1. Simple Return Attribution 

We will experiment using a simple return attribution example. Metric f(x) is the portfolio 

return in percentage, using the strategy with selected features. Feature 1 is the country allocation 

strategy, feature 2 is the stock selection strategy. Table 5 shows example data for the experiment. 

We applied 3 different attribution methods, namely one-at-a-time, sequential, and Shapley, 

discussed in Moehle’s research (2021) in the literature review part.  

The result of the attribution methods is shown in Table 6. Code is in the appendix. One-at-a-

time method has a non-zero unattributed return because it doesn’t have full attribution property. 

Sequential method has all unattributed return in the stock selection because it doesn’t treat 

features equally by prioritizing the country allocation over the stock selection strategy. The 

Shapley method does not have attributed return and treats all features equally. It can be seen that 

unattributed return of the one-at-a-time is split into 2 features equally in the Shapley method. We 

can conclude that Shapley method is fair and has full attribution. 

Table 2. Attribution results for experiment 1 

 Benchmark 

b 

Country allocation 

a1 

Stock selection 

a2 

Unattributed 

y - a1 - a2 - b 

One at a time 6.8 -2.0 2.6 0.9 

Sequential 6.8 -2.0 3.5 0 

Shapley 6.8 -1.55 3.05 0 
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Experiment 2. Portfolio management via Convex Optimization 

We carried out the single portfolio optimization problem on the market data using CVXPortfolio 

open-source code in Python (Boyd, 2016). We used annualized returns of the backtest 

performance as a metric to compare attribution methods. 

Trading strategy. We simulated an investment strategy similar to Boyd (2016), formulating the 

single portfolio optimization. We changed the meaning of hyperparameters 𝛾𝑡𝑟𝑎𝑑𝑒, 𝛾ℎ𝑜𝑙𝑑 , 𝛾𝑟𝑖𝑠𝑘 to 

be binary variables (1 or 0), so that we can turn on or off features. So, we have 3 features in this 

configuration. It allows to apply attribution methods on the metrics. The only difference of the 

current optimization problem to the one we discussed in the theoretical part is we multiplied 

constant 5 to the risk measure to focus more on the risk management. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑟̂𝑡
𝑇𝑧𝑡 − 𝛾𝑡𝑟𝑎𝑑𝑒𝜑𝑡

𝑡𝑟𝑎𝑑𝑒(𝑧𝑡) − 𝛾ℎ𝑜𝑙𝑑𝜑𝑡
ℎ𝑜𝑙𝑑(𝑤𝑡 + 𝑧𝑡) − 𝛾𝑟𝑖𝑠𝑘𝜓𝑡(𝑤𝑡 + 𝑧𝑡) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝟏𝑇𝑧𝑡 = 0, 𝑧𝑡 ∈ 𝑍𝑡 , 𝑤𝑡 + 𝑧𝑡 ∈ 𝑊𝑡 

When all 3 features are 0, the portfolio makes a decision based on the estimated returns.  

Backtests. All our simulations use data over a period of 5 years, from January 2017 to December 

2022, on the components of the S&P 500 index as of January 2023. We collected the open-

source market data from Yahoo Finance API.  The data consists of the realized daily price data 

and volumes. The federal reserve overnight rate was used as the cash return. In holding costs of 

all assets, we used 𝑠𝑡 = 0.01% (1 basis point). The transaction cost function used 𝑎𝑡 = 0.05% (5 

basis points). Values of other parameters in cost models 𝑏𝑡 = 1, 𝑐𝑡 = 0, 𝑑𝑡 = 0. 

The starting allocation of the portfolio for all simulations was uniform distribution 𝑤1 = (
𝟏

𝑛
, 0). 

We set the leverage constraint to 1. Return forecast for simple simulation was generated by 

means of returns with rolling window of 250 days. The return estimate formula (𝑟𝑡̂)𝑖 =

1

250
∑ (𝑟𝑡−𝜏)𝑖

250
𝜏=1  
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Though it’s not a real return prediction, it’s enough to illustrate the idea. We similarly estimated 

the volatility with variance with window of length 250 days.  

Results 

We carried out multiple backtests with different hyperparameter combinations 

(𝛾𝑡𝑟𝑎𝑑𝑒, 𝛾ℎ𝑜𝑙𝑑 , 𝛾𝑟𝑖𝑠𝑘). We show the some of the backtest performances to look at the effects of 

features. When all features are turned on (or all hyperparameters are 1), the annualized return of 

the portfolio was 17.82%. S&P 500 index showed only 7.20% annualized return over the same 

period.  Its performance compared to the benchmark S&P 500 index is given in the Figure 1. 

 

Figure 1. Performance of portfolio using SPO (1,1,1) and S&P 500 index 

Weights of the portfolio SPO (1,1,1) is shown in Figure 2. The red line is Apple’s stock (AAPL). 

Legend of the plot colors isn’t displayed because a large number of stocks (about 500) didn’t fit 

the graph. 
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Figure 2. Weights of assets in the portfolio using SPO (1,1,1) 

The risk metric in the optimization plays a key role to avert the high volatility, which is our risk 

metric. When the risk feature is turned off or 𝛾𝑟𝑖𝑠𝑘 = 0, the portfolio gets much higher returns. It 

reached the annualized return of 66.27%. Its volatility (risk) increased with it. This is the 

expected outcome of the trading. The backtest performance is given in the Figure 3. 

 

Figure 3. The performance of the portfolio with SPO (1,1,0) 

When the feature of trade cost is turned off from the optimization problem or 𝛾𝑡𝑟𝑎𝑑𝑒 = 0, we 

expect the portfolio to make more trades and lose more money on transactions be default. As 

anticipated, the portfolio with SPO (0,1,1), or 𝛾𝑡𝑟𝑎𝑑𝑒 = 0, had the annualized return of 11.67%, 
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less than the portfolio with all features (17.82%). Also, it made much more trades than previous 

ones. Weights of that portfolio in Figure 4 shows that it made a lot of changes to the portfolio.  

 

Figure 4. Weights of assets in the portfolio using SPO (0,1,1) 

As we have 3 binary hyperparameters, we get 8 different combinations to carry out backtests. 

We collected all the backtest results in Table 3.  

Table 3. Backtest results with different hyperparameters 

Number 𝜸𝒕𝒓𝒂𝒅𝒆 𝜸𝒉𝒐𝒍𝒅 𝜸𝒓𝒊𝒔𝒌 f(x), return, % 

1 0 0 0 56.36 

2 1 1 1 17.84 

3 1 1 0 66.27 

4 1 0 1 17.52 

5 0 1 1 11.67 

6 1 0 0 66.27 

7 0 1 0 75.49 

8 0 0 1 11.69 

 

Using the simulation results, we calculated performance attributions of features (b = 56.36%) 
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Table 4. Attribution values of features 

 Trading cost 

a1 

Holding cost 

a2 

Risk measure 

a3 

Unattributed 

y - a1 - a2 -a3 -b 

One at a time 9.91 19.13 -44.67 -22.89 

Sequential 9.91 0 -48.43 0 

Leave one out 6.17 0.32 -48.43 3.42 

Shapley 6.325 6.48 -50.63 0 

 

We see that the one-at-a-time attribution overestimates the contribution of each feature because 

when only one feature is included, it leads to bigger performance. One the other side, the leave-

one-out attribution underestimates contributions of features because one new feature makes a small 

change when all others are added. These problems seem to be resolved by Shapley attribution. For 

example, the attribution value of holding cost feature is 19.13 in one-at-a-time, 0 in sequential, 

0.32 in leave-one-out methods, 6.48 in Shapley. Values of Shapley attribution seem more 

reasonable because it takes the average change over different combinations.  

We suggest using the Shapley value for performance attribution. Shapley values have all 

necessary properties: fairness, full attribution, monotonicity. When using Shapley value in the 

setting of a few parameters, the computational cost of it is not high.    
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Experiment 3. Shapley Value Attribution for VaR and ES 

Introduction 

Based on the experiments by Hagan et al. (2021), we decided to first recreate their results for 

Shapley Value estimation for VaR and ES. We then applied the same to empirical data based on 

the S&P 500 index, to observe how well the estimation works on real data. We then applied it to 

multiple periods to see the difference between them and try to explain the changes. Finally, we 

also did similar experiments on the Hang Seng Index to see what inferences we could make. 

Accuracy of Estimation Method 

We start off by creating a dataset with the same properties as Hagan et al. (2021). We first 

generated a 25x25 Positive Definitive Matrix and then generated 500 independent samples from 

the multivariate gaussian distribution. This results in a dataset with a shape of 25x500, representing 

in our experiment, a set of 25 companies and the stock price data of their last 500 days. 

The next step was calculating the estimator for the VaR and ES as provided by Hagan et al. 

(2021). We first calculated the value of the estimator. Then we had to calculate the Shapley (VaR) 

and the Shapley (ES), to do this we used historical bootstrapping and Monte Carlo Simulations. 

The Python3 code for Shapley Value calculation using Monte Carlo Simulation can be found in 

the appendix (A1). The Python3 code snippet explaining the calculation of VaR and ES as char_fct 

or character function for the calculation of Shapley Value can also be found in the appendix (A2).  

We will explain the concept of the code briefly. We first take the total set of N players (here 

25), then, for each player Pi we calculate the Shapley value. For M simulations (we used 500), in 

each simulation a random number of players are chosen, then for each simulation we see the results 

with or without Pi and Shapley value is the difference between the two values. 

To calculate the VaR and ES, for every day, we looked at all the players included and calculated 
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their daily loss or profit. Then, for every day, we took the biggest loss on that day and stored it. 

After the code is done, we have 500 days maximum losses, we then sort these losses and using the 

confidence interval q, for VaR we take the (1-q)th value, for confidence interval q = 95%, and 500 

days, we will take the (0.05)x(500) = 25th value. As for ES, we take the average of the first (1-q)th 

values, here we take the average of 25 worst losses. 

Table 3. Results for Shapley Attribution on theoretical dataset 

Player Shapley_VaR Estimated_VaR Shapley_ES Estimated_ES 

1 -4.1644 -4.7397 -4.9068 -5.8363 

2 -1.9451 -2.2202 -2.5152 -2.7146 

3 -1.9793 -2.3635 -2.2061 -2.2790 

4 -9.3318 -11.9719 -11.3646 -11.7400 

5 -3.4561 -3.6948 -4.4542 -4.9643 

6 -4.1147 -2.9371 -6.5737 -7.0805 

7 -2.8867 -3.3045 -4.0706 -4.1244 

8 -4.1089 -4.1630 -5.1515 -4.2097 

9 -4.0773 -3.3932 -5.5215 -6.1053 

10 -7.6393 -6.5335 -8.3879 -9.4410 

11 -3.3836 -3.6841 -4.1107 -4.9437 

12 -19.6535 -21.5931 -27.1609 -31.8871 

13 -10.7713 -9.9563 -10.4680 -10.7909 

14 -3.2609 -3.4648 -5.6493 -6.4333 

15 -2.5075 -2.6807 -4.3648 -5.2781 

16 -3.7637 -3.4170 -4.7309 -4.5433 

17 -6.4030 -5.2655 -8.7133 -9.1931 

18 -71.0939 -85.1265 -84.2088 -90.8861 

19 -18.3007 -13.1232 -20.2986 -23.7860 

20 -24.8744 -21.3557 -34.3480 -30.2626 

21 -7.5904 -5.7176 -8.1424 -9.1467 
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22 -23.3313 -26.7084 -31.3689 -24.8740 

23 -25.5435 -20.2496 -30.7224 -35.0533 

24 -29.1230 -28.5482 -36.6052 -36.3633 

25 -36.9139 -32.5422 -45.5160 -35.5907 

As can be observed, all results are in the same order of magnitude, there are some exceptions, 

but the overall estimation is quite accurate. The correlation calculates using Spearman Correlation 

from the scipy library for VaR and ES respectively is. 

SpearmanrResult(correlation=0.9454, p-value=1.099e-12) 

SpearmanrResult(correlation=0.9785, p-value=2.916e-17) 

As can be observed, the results are highly correlated, thus we can conclude that the estimator is a 

good calculator for the Shapley Value. 

 

Empirical Testing 

To expand the application of the experiment, we decided to apply the calculations to real data. 

We got their daily historical data from 2000-2020 using Yahoo Finance. We decided to use the top 

25 large cap S&P 500 stocks, the reason we decided to do this was because this would provide us 

with a wide market breadth of large cap companies. It would also provide us with companies from 

different industries, reducing market or industry specific phenomena. We ended up with 7 

companies related to Technology, 7 companies related to healthcare and pharmaceuticals, 5 

companies related to goods and services, 4 related to banking and payment services, and 2 oil 

companies. We have added below a histogram of the 25 companies with their tickers, to find the 

associated names with the tickers, please look in the appendix (A3). 
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Figure 5. Histogram to show the distribution of the stocks

 

The summary statistics of the data can be found in the appendix (A4). 

One important thing we added at this point was that, for the recreation of the experiment we 

made the data, therefore we know the distribution of the data, but since we are now using empirical 

data, we need to figure out the closest elliptical distribution for each stock. The reason we figure 

out elliptical distribution is because the calculations done by Hagan et al. (2021) were only 

applicable to elliptical distributions. So, we used the Fitter function from the fitter library in 

Python3 to figure out which distribution best fit each stock and altered Aq and Bq accordingly. 
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We ran our code to calculate the Shapley (VaR) and Shapley (ES) for four five-year time 

periods. Find below the results of the calculations from 2015-2020, Table 4-6 containing the results 

from 2000-2015 can be found in the appendix (A5). 

Table 7. Empirical results for Shapley Attribution from 2015-2020 

Ticker Shapley_VaR Estimated_VaR Shapley_ES Estimated_ES 

AAPL -0.0431 -0.0620 -0.0601 -0.0780 

ABBV -0.1551 -0.1232 -0.2739 -0.2543 

AMZN -0.1311 -0.1171 -0.2112 -0.1716 

AVGO -2.0016 -2.6107 -2.7425 -2.6519 

BAC -0.0364 -0.0229 -0.0264 -0.0291 

COST -0.6615 -0.3786 -1.0798 -1.3058 

CVX -0.2229 -0.3348 -0.2561 -0.3449 

HD -0.4496 -0.5828 -0.6444 -0.7189 

JNJ -0.2153 -0.1728 -0.3074 -0.2583 

JPM -0.1835 -0.3133 -0.1800 -0.0958 

KO -0.0486 -0.0374 -0.0496 -0.0264 

LLY -0.3080 -0.0952 -0.3906 -0.4681 

MA -1.0225 -1.4850 -1.7792 -1.9066 

META -1.2311 -1.3222 -2.4182 -1.3529 

MRK -0.1111 -0.0526 -0.1192 -0.0910 

MSFT -0.2764 -0.4945 -0.4478 -0.3073 

NVDA -0.3055 -0.3231 -0.5396 -0.7476 

PEP -0.2123 -0.2630 -0.3240 -0.4935 

PFE -0.0663 -0.0260 -0.1221 -0.1322 

PG -0.2832 -0.1248 -0.4645 -0.4594 

TMO -2.3663 -2.3663 -3.2829 -2.7225 

TSLA -0.2251 -0.1603 -0.3582 -0.3247 

UNH -2.4846 -2.7707 -3.9197 -4.9341 
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V -1.6312 -1.4836 -2.3649 -2.0784 

XOM -1.1871 -0.7868 -1.6654 -2.4816 

In the above data, if the values are 0, that indicates that the company was not listed on the stock 

exchange during that period. 

The way to interpret these values is that the more negative the values, the more that stock 

contributes to the VaR or the ES. Therefore, companies with less negative VaR and ES would 

perform better and lead to less risky portfolios. 

Below are some graphs depicting the results and observable changes for the companies. 

Figure 6. Change in Shapley (VaR) for the 25 tickers
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Figure 7. Change in Shapley (ES) for the 25 tickers

 

From the graphs, we can see that.  

• There are several companies which consistently contribute little to nothing to the VaR 

or ES of the portfolio, these being AAPL, BAC, KO, NVDA, and PFE. 

• 2015-2020 was the period with the largest VaR and ES overall, with AVGO, META, 

TMO, and UNH standing out with exceptional and unexpectedly low values. 

• Some companies like TMO, UNH, V, and XOM are consistently some of the worst 

performing companies. 

To see the accuracy of the estimation for the Shapley (VaR) and Shapley (ES), we decided to 

use spearman correlation from the scipy library of Python3, using the 2015-2020 results. The 

results for the Shapley (VaR) and Shapley (ES) calculations are  

SpearmanrResult(correlation=0.8608, p-value=3.3884e-08) 

SpearmanrResult(correlation=0.9692, p-value=1.6849e-15) 
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As can be observed, the correlation for the ES is very high, while the correlation for VaR is 

still above 85%. The correlation overall is much lower when compared to theoretical data, but that 

is to be expected since we figured out the closest distribution for each stock rather than have data 

which equated to an exact distribution. 

Hang Seng Index 

We decided to do the same experiment for the Hang Seng Index, to see if there will be any 

major changes. So, we decided to take the daily data from 2015-2020 of 25 of the top 30 largest 

market cap companies. Below are our results. 

Table 8. Hang Seng Index results for Shapley Value Attribution 

Company Shapley_VaR Estimated_VaR Shapley_ES Estimated_ES 

TENCENT -0.0508 -0.0684 -0.0669 -0.0787 

BABA-SW -0.4281 -0.4457 -0.4672 -0.3360 

CHINA MOBILE -0.2223 -0.0779 -0.3254 -0.2411 

CCB -0.2092 -0.0629 -0.2346 -0.1274 

HSBC HOLDINGS -0.0335 -0.0597 -0.0201 -0.0104 

AIA -0.0036 -0.0049 0.0054 0.0050 

MEITUAN-W -1.8279 -2.4142 -2.9537 -2.7748 

CNOOC -0.0440 -0.0787 -0.0463 -0.0637 

HKEX -5.7282 -6.3878 -8.2254 -6.7307 

PING AN 0.0097 0.0156 0.0023 0.0021 

ICBC -0.0007 -0.0007 0.0528 0.0371 

SHK PPT -0.2064 -0.0859 -0.2638 -0.2173 

BUD APAC -0.0738 -0.0751 -0.0851 -0.0542 

ANTA SPORTS -0.4499 -0.5572 -0.6678 -0.7634 

XIAOMI-W -0.2778 -0.1636 -0.3045 -0.4035 

CITIC 0.0194 0.0159 0.0160 0.0224 

CHINA RES LAND -0.0210 -0.0186 -0.1013 -0.1259 

BOC HONG KONG -0.1406 -0.2204 -0.1648 -0.1711 
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BANK OF CHINA -0.1959 -0.1685 -0.2347 -0.1481 

BYD COMPANY -0.3261 -0.4602 -0.5011 -0.5176 

MTR 

CORPORATION 

-0.5093 -0.7984 -0.5853 -0.7529 

GALAXY ENT -0.1069 -0.0946 -0.2265 -0.3412 

SANDS CHINA LTD -1.3326 -0.6092 -2.2507 -1.4699 

CHINA OVERSEAS 0.2164 0.1274 0.1598 0.1651 

HANG SENG BANK -5.6000 -5.1394 -5.6000 -4.5207 

As can be observed, the magnitude of losses is larger here when compared to S&P 500 in 2015-

2020. There are several companies that have very low negative or even positive values, but the 

negatives among the Hang Seng index are even lower. 
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Conclusion 

The focus our project was to use Shapley Value for Risk and Return Attribution. During our 

research we realized that previous papers were very heavily focus on proving their experiments 

while using generated data, thus limiting their application in any real-world problems. Thus, one 

of the focuses of our paper was to implement the experiments with real data, observe the changes 

and difficulties in doing so and figure out how to resolve them, not specific to the data itself but 

as a general solution. 

Through this paper we have showcased that Shapley Value and its utilization for Portfolio 

Assessment, and Risk and Return Attribution can be implemented with some key changes to real 

world data. Thus, expanding the applicability of Shapley Value to real world problems. We also 

compared Shapley value with other attribution methods and proved its advantages over others in 

different scenarios. 

Future Work: One of our main limitations was a lack of computation power, therefore when we 

were doing Monte Carlo Simulations for calculating Shapley Value, we only used 500 iterations, 

Hagan et al. (2021) used 100,000 iterations. Therefore, one of the ways to improve on our current 

results would be to redo the simulations with more iterations. Another limitation of conducting the 

trading simulations was the complexity of implementing convex optimization problems with more 

factors like momentum, value, growth, commonly used in style investing. It would give more 

insights into the impact of common trading strategies on the portfolio performance. Another future 

development might include more performance metrics to the performance attribution. 
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Appendix 

Appendix A. Shapley Value Attribution for VaR and ES 

A1. Python3 Code for Shapley Value Calculation through Shapley Value 

 

A2. Python3 Code for character function in Shapley Value calculation 
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A3. Name for Company Ticker 

'AAPL': Apple (Tech, Hardware, Software) 

'ABBV': Abbvie Inc. (Healthcare)/(Pharmaceutical) 

'AMZN': Amazon (Tech, Service Provider) 

'AVGO': Broadcom Inc. (Tech - Semiconductor) 

'BAC': Bank of America (Banking) 

'COST': Costco Wholesale (Retail) 

'CVX': Chevron Corporation (Oil) 

'HD': Home Depot (Retail) 



 45 

'JNJ': Johnson and Johnson (Healthcare)/(Pharmaceutical) 

'JPM': JPMorgan Chase & Co. (Banking) 

'KO': Coca-Cola Co. (Beverage) 

'LLY': Eli & Lilly Co. (Healthcare)/(Pharmaceutical) 

'MA': Mastercard Inc. (Payment Processing)/(Financial Services) 

'META': META/ Facebook (Tech) 

'MRK': Merk and Co. Inc. (Healthcare)/(Pharmaceutical) 

'MSFT': Microsoft (Tech, Hardware, Software) 

'NVDA': NVIDIA (Tech - Semiconductor) 

'PEP': PepsiCo, Inc. (Food, Beverage) 

'PFE': Pfizer Inc. (Pharmaceutical)/(Biomedical) 

'PG': Procter and Gamble (Manufacturing and Marketing) 

'TMO': Thermo Fisher Scientific Inc. (Pharmaceutical)/(Biomedical) 

'TSLA': Tesla (Tech) 

'UNH': United Health Group (Healthcare)/(Pharmaceutical) 

'V': Visa Inc. (Payment Processing)/(Financial Services) 

'XOM': Exxon Mobile Corp (Oil) 

A4. Company Summary Statistics 

Ticker mean median variance 

AAPL 13.6431 6.149027 240.2112 

ABBV 50.99375 46.91159 271.1421 

AMZN 18.04874 6.0035 670.3609 

AVGO 98.52008 67.76908 6906.777 
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BAC 19.8428 18.39059 82.11153 

COST 77.94561 47.11916 3959.442 

CVX 53.3154 48.68353 766.6224 

HD 58.11879 28.44855 2751.425 

JNJ 57.98033 42.90413 963.9845 

JPM 39.46897 29.48583 605.6267 

KO 22.94106 18.54004 107.1989 

LLY 45.62528 36.3587 530.6217 

MA 74.69655 49.27923 4947.947 

META 109.5879 109.89 3236.576 

MRK 31.62128 26.91824 198.9386 

MSFT 34.96939 21.72524 842.0622 

NVDA 10.18788 3.533893 255.5899 

PEP 53.45057 44.71516 720.6232 

PFE 17.70822 15.70298 48.30084 

PG 47.85792 42.97717 457.0019 

TMO 79.90146 49.95012 5182.484 

TSLA 12.21023 14.10633 58.25946 

UNH 68.33599 41.31557 4662.014 

V 60.578 49.20689 2167.738 

XOM 44.28061 47.13566 270.5629 

 

A5. Simulation Results 
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Ticker Shapley_VaR Estimated_VaR Shapley_ES Estimated_ES 

AAPL -0.0015 -0.0007 -0.0031 -0.0039 

ABBV 0.0000 0.0000 0.0000 0.0000 

AMZN -0.0054 -0.0087 -0.0135 -0.0092 

AVGO 0.0000 0.0000 0.0000 0.0000 

BAC -0.0624 -0.0552 -0.1130 -0.0862 

COST -0.3233 -0.3579 -0.5653 -0.6182 

CVX -0.0430 -0.0568 -0.0849 -0.1120 

HD -0.3432 -0.3714 -0.5529 -0.2545 

JNJ -0.1162 -0.1725 -0.2944 -0.3219 

JPM -0.1681 -0.1031 -0.2994 -0.3918 

KO -0.0513 -0.0095 -0.0880 -0.0468 

LLY -0.3237 -0.4648 -0.9533 -0.5333 

MA 0.0000 0.0000 0.0000 0.0000 

META 0.0000 0.0000 0.0000 0.0000 

MRK -0.2211 -0.1120 -0.5124 -0.5096 

MSFT -0.2659 -0.3533 -0.5180 -0.7690 

NVDA -0.0215 -0.0280 -0.0429 -0.0335 

PEP -0.2001 -0.2149 -0.3817 -0.4868 

PFE -0.1612 -0.1347 -0.2782 -0.2016 

PG -0.2035 -0.1750 -0.4979 -0.4568 

TMO -0.2917 -0.2102 -0.4306 -0.6084 

TSLA 0.0000 0.0000 0.0000 0.0000 

UNH -0.2706 -0.4064 -0.5048 -0.4825 

V 0.0000 0.0000 0.0000 0.0000 

XOM -0.5297 -0.4077 -1.0337 -1.2443 

Table 4. Empirical results for Shapley Attribution from 2000-2005 

Ticker Shapley_VaR Estimated_VaR Shapley_ES Estimated_ES 

AAPL -0.0064 -0.0116 -0.0087 -0.0099 
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ABBV 0.0000 0.0000 0.0000 0.0000 

AMZN -0.0086 -0.0131 -0.0124 -0.0168 

AVGO -0.0289 -0.0172 -0.0382 -0.0420 

BAC -0.1628 -0.2472 -0.3420 -0.2873 

COST -0.1973 -0.1713 -0.3225 -0.4148 

CVX -0.2832 -0.4462 -0.4097 -0.4165 

HD -0.0645 -0.0895 -0.0929 -0.0950 

JNJ -0.0901 -0.1427 -0.1028 -0.0598 

JPM -0.2994 -0.2083 -0.4752 -0.2972 

KO -0.0273 -0.0477 -0.0341 -0.0445 

LLY -0.1095 -0.0483 -0.1419 -0.1880 

MA -0.1121 -0.1380 -0.1593 -0.1286 

META 0.0000 0.0000 0.0000 0.0000 

MRK -0.1289 -0.1565 -0.2189 -0.1333 

MSFT -0.1083 -0.0406 -0.1643 -0.0784 

NVDA -0.0293 -0.0423 -0.0425 -0.0540 

PEP -0.1725 -0.1739 -0.2930 -0.3107 

PFE -0.0506 -0.0897 -0.0718 -0.0509 

PG -0.2447 -0.3313 -0.4011 -0.5778 

TMO -0.5864 -0.3404 -0.8862 -0.8569 

TSLA 0.0000 0.0000 0.0000 0.0000 

UNH -0.6917 -0.9647 -0.9668 -0.6261 

V -0.4282 -0.6536 -0.5301 -0.2732 

XOM -1.2329 -0.3203 -2.0190 -3.0752 

Table 5. Empirical results for Shapley Attribution from 2005-2010 

Ticker Shapley_VaR Estimated_VaR Shapley_ES Estimated_ES 

AAPL -0.0191 -0.0241 -0.0299 -0.0389 

ABBV -0.0505 -0.0468 -0.0518 -0.0623 

AMZN -0.0280 -0.0154 -0.0317 -0.0357 
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AVGO -0.1443 -0.1028 -0.2297 -0.1639 

BAC -0.0241 -0.0348 -0.0241 -0.0125 

COST -0.1689 -0.2091 -0.2061 -0.1437 

CVX -0.3332 -0.6017 -0.4466 -0.5598 

HD -0.1223 -0.0720 -0.1467 -0.2121 

JNJ -0.0994 -0.0569 -0.1207 -0.0575 

JPM -0.1192 -0.0398 -0.1319 -0.1922 

KO -0.0441 -0.0126 -0.0444 -0.0585 

LLY -0.0655 -0.0429 -0.1072 -0.1479 

MA -0.2344 -0.1997 -0.3951 -0.4125 

META -0.4575 -0.6043 -0.7899 -0.5898 

MRK -0.0558 -0.0764 -0.0919 -0.0458 

MSFT -0.0710 -0.1224 -0.1260 -0.1003 

NVDA -0.0068 -0.0051 -0.0133 -0.0109 

PEP -0.1587 -0.1313 -0.1861 -0.0980 

PFE -0.0385 -0.0071 -0.0587 -0.0293 

PG -0.1762 -0.2748 -0.2628 -0.1268 

TMO -0.8020 -0.6041 -1.2961 -1.3888 

TSLA -0.1210 -0.0842 -0.1944 -0.2094 

UNH -0.6346 -0.9582 -0.8778 -0.8004 

V -0.4531 -0.3562 -0.7007 -1.0710 

XOM -0.9533 -0.9611 -1.4119 -0.9065 

Table 6. Empirical results for Shapley Attribution from 2010-2015 

  



 50 

Appendix B. Code for Simple Return Attribution Experiment 

The code is to calculate the one-at-a-time, sequential, shapley attribution, given the data with 

2 features. data variable is the input data used in experiment 2 of this paper. 

 

Appendix C. Code for Portfolio management via Convex Optimization 

We attached the code to run convex optimization using the custom class from CVXPortolio 

library in Python. The code below runs optimization scenario when all hyperparameters are 

turned on or included. 
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